sexta-feira, 26 de outubro de 2012

Funçoes trigonométricas

Função seno

Chamamos de função seno a função f(x) = sen x
O domínio dessa função é R e a imagem é Im [ -1,1] ; visto que, na circunferência trigonométrica o raio é unitário e, pela definição do seno, –1 £ sen x £ 1, ou seja:
Domínio de f(x) = sen x; D(sen x) = R.

Imagem de f(x) = sen x; Im(sen x) = [ -1,1] .
Sinal da Função: Como seno x é a ordenada do ponto-extremidade do arco:1
f(x) = sen x é positiva no 1° e 2° quadrantes (ordenada positiva)
f(x) = sen x é negativa no 3° e 4° quadrantes (ordenada negativa)
Observe que esse gráfico é razoável, Pois: 
Quando , 1º quadrante, o valor de sen x cresce de 0 a 1.
Quando , 2º quadrante, o valor de sen x decresce de 1 a 0.
Quando , 3º quadrante, o valor de sen x decresce de 0 a -1.
Quando , 4º quadrante, o valor de sen x cresce de -1 a 0.]

Função cosseno 

Chamamos de função cosseno a função f(x) = cos x.
O domínio dessa função é R e a imagem é Im [ -1,1] ; visto que, na circunferência trigonométrica o raio é unitário e, pela definição do cosseno, –1 £ cos x £ 1, ou seja:
Domínio de f(x) = cos x; D(cos x) = R.
Imagem de f(x) = cos x; Im(cos x) = [ -1,1] .
Sinal da Função: Como cosseno x é a abscissa do ponto-extremidade do arco:
f(x) = cos x é positiva no 1° e 2° quadrantes (abscissa positiva)
f(x) = cos x é negativa no 3° e 4° quadrantes (abscissa negativa)           
Observe que esse gráfico é razoável, Pois: 
Quando , 1º quadrante, o valor do cos x decresce de 1 a 0.
Quando , 2º quadrante, o valor do cos x decresce de 0 a -1.
Quando , 3º quadrante, o valor do cos x cresce de -1 a 0.
Quando , 4º quadrante, o valor do cos x cresce de 0 a 1.
       

Função tangente  


Chamamos de função tangente a função f(x) = tg x.

Domínio de f(x) = O domínio dessa função são todos os números reais, exceto os que zeram o cosseno pois não existe cosx = 0
Imagem de f(x) = tg x; Im(tg x) = R ou  .

Sinal da Função:   Como tangente x é a ordenada do ponto T interseção da reta que passa pelo centro de uma circunferência trigonométrica e o ponto-extremidade do arco, com o eixo das tangentes então:
f(x) = tg x é positiva no 1° e 3° quadrantes (produto da ordenada pela abscissa positiva)
f(x) = tg x é negativa no 2° e 4° quadrantes (produto da ordenada pela abscissa negativa) 

Nenhum comentário:

Postar um comentário